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A new parameter for describing the structure 
bifurcation in two-phase alloys containing 
coherent particles 

M. DOI, T. M I Y A Z A K I  
Department of Materials Science and Engineering, Metals Section, Nagoya Institute of 
Technology, Gokiso-Cho, Showa-Ku, Nagoya 466, Japan 

The so-called bifurcation diagrams for ?' precipitate particles in nickel-based alloys were 
obtained by calculating the energy state for a pair of particles on the basis of the bifurcation 
theory. Based on the bifurcation diagrams, we have proposed a new parameter for describing 
the two-phase structure containing coherent particles. The parameter is defined as the mean 
particle radius at the intersection of the energy ridge and the line of R = - 0 . 5  or R=0.5 in the 
bifurcation diagram (R-(r~-r~)/(r~+r#), where r, and rl~ are the radii of 0~ and 13), and is 
symbolized by ?*+o.5. Because the energy state of the paired 0~ and 13 is maximum at ?*_+o.~ 
when R= ___0.5, ?*_+0.5 is just like the watershed and hence we have termed it "'structureshed". 
This parameter successfully describes the effects of elastic energy as well as surface energy on 
the microstructural changes during coarsening of precipitate particles. 

1. I n t r o d u c t i o n  
Our group has been studying the morphological 
changes of coherent precipitates not only by transmis- 
sion electron microscopy (TEM) but also through 
theoretical calculations b a s e d  on microelasticity 
theory, and has found several types of incredible 
behaviour of coherent precipitates during ageing of 
various nickel-based alloys [1-10]. Some typical ex- 
amples of the behaviour are: 

1. a single 7' (Ni3X phase having L12 structure) 
cuboid splits into a pair of parallel small plates or 
eight small cuboids during coarsening; 

2. coarsening of coherent particles slows down re- 
markably in the later stage of ageing; 

3. coherent particles tend to become uniform in size 
during coarsening; and 

4. coherent particles tend to exhibit a non-uniform 
distribution. 
These phenomena are results of elastic energy and, in 
particular, of elastic interaction energy which arises 
from the overlap of elastic strain fields around coher- 
ent particles. 

It used to be believed that the driving force for 
precipitate coarsening was the surface energy of 
precipitates. Coarsening due to surface energy is well- 
known as "Ostwald ripening". The theoretical treat- 
ments of Ostwald ripening are widely known as the 
"LSW theory" which was proposed by Lifschitz and 
Slyozov [11] and Wagner [12], or as "MLSW (Modi- 
fied LSW) theories" which were obtained by modi- 
fying the LSW theory with respect to the volume 
fraction [13-19]. Some of the predictions of the above 
theories are 

1. the mean particle radius #(t), at an ageing time, t, 
is proportional to t l/m, i.e. 

F(f) ~- k t  1/m (1) 

where k and m are constant, and the so-called t 1/3 law 
holds (i.e. m = 3) provided the rate-controlling process 
is the lattice diffusion; and 

2. the size-distribution of particles does not change 
during coarsening and can be scaled by ~(t). 

However, our findings are contradictory to the 
prediction of the already existing theories of coarsen- 
ing. The contradiction is most likely to be due to the 
fact that the existing theories ignore the effect of elastic 
energy. Johnson [20-22] and our group [7, 23] have 
proposed a new theory of microstructural stability, 
named the "bifurcation theory" where the effects not 
only of surface energy but also of elastic energy are 
taken into consideration. Our new theory predicts 
that in elastically constrained systems, such as 7' 
particles in nickel-based alloys, smaller particles can 
coarsen at the expense of larger particles to produce a 
uniform structure; the bifurcation theory has brilliant 
expectations [10]. Kawasaki and Enomoto [24, 25] 
have studied the effects of elastic field interactions 
between precipitate droplets on the kinetics of 
Ostwald ripening. They showed theoretically the oc- 
currence of the deceleration of particle coarsening, but 
their condition for calculating the elastic interaction 
energy is rather inconsistent with reality. 

Our group also proposed the parameter A* to 
describe the effect of elastic interaction energy on the 
y' precipitate morphology in various nickel-based al- 
loys [2, 3]. A* is defined as the ratio of ?-u lattice 
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misfit to the surface energy density of 7' particle in 7 
matrix (A* -- S/7s)- It is true that A* is excellently used 
to describe the degree of elastic constraint and, in 
particular, the effects of elastic interaction energy, but 
A* disregards the important point that elastic inter- 
action depends on the inter-particle distance and 
hence the volume fraction of particles. We must find 
another parameter instead of A* to describe the 
microstructural changes in coherent two-phase sys- 
tems. 

The aims of the present studies were: 
1. to calculate the energy state of 7' particles in 

several nickel-based alloys by utilizing the bifurcation 
theory 

2. to propose a new parameter which can describe 
the structure bifurcation in the systems containing 
coherent second-phase particles; and 

3. to interpret the microstructural change during 
ageing of nickel-based alloys by utilizing the para- 
meter newly proposed here. 

2. Ca lcu la t ion  based on stabi l i ty  
b i furca t ion  t h e o r y  

2.1. Theoretical basis 
The total free energy, ETT L of the system containing 
coherent second-phase particles is expressed by the 
equation 

ETT L ~--- EST R -}- EIN T -[- ESURF (2) 

where EST R is the elastic strain energy due to 6, EIN T is 
the elastic interaction energy between particles, and 
ESURV is the surface energy of particles; elastic energy, 
EELA, consists of Esgg and E[NT, i.e. EEL A = EST R 
-~- EIN T. Theoretically, the energy state of a two-phase 

structure should be calculated as a many-bodied prob- 
lem because the structure usually contains a large 
number of particles, but in fact we cannot easily 
calculate the precise E~N T for more than two particles. 
Therefore, we calculate ETTL for a pair of particles as 
the simplest case of a many-bodied problem. 

Paired particles ~ and [3 are elastically inhomogen- 
eous ellipsoids of revolution in an elastically aniso- 
tropic matrix. ~ and 13 change their sizes under the 
condition that their total volume remains constant. 
The constant volume, V, is expressed by the equation 

V = (4~/3)(r 3 + r~) 

= 2 (4~/3)f 3 (3) 

The parameter R is used to describe the relative sizes 
of ~ and [3, and is, defined by the following eqqation 
proposed by Johnson [20] 

R =- (r= - r~)/(r= + rf~) (4) 

where ra and r13 are the radii of a and [3, respectively. R 
varies between - 1 and 1 inclusive: when R = 0, both 

and 13 are identical and take the mean radius ~; when 
R = _+ 1, only one of the pair exists and takes the 
maximum radius 2~/3~. The volume fraction fv, of 
paired particles is expressed by the equation 

f~ = V/(2L ~) 

= /r/(6d 3) (5 )  
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where d is obtained by normalizing the actual inter- 
particle distance L, with respect to the mean particle 
size 2f, i.e. d =- L/(2f). Equation 4 indicates that fv is 
determined only by d, regardless of V. 

The total elastic strain energy, EST R, of ~ and [3 is 
given by the equation 

EST R = EINCL gc~ Jr- E1NCL V[3 (6) 

where V~ and V~ are the volumes of ~ and [3, respect- 
ively. The elastic energy density, E~NCL, is calculated by 
using the following equation developed by Eshelby 
[26] 

- -  1 1 T* E,NCC ( /2)crijezj (7) 
T* where cr~j is the stress inside the particle and eq is the 

eigenstrain, i.e. the stress-free strain or transformation 
strain. The elastic interaction energy, E[NT, between 
and [3 is calculated using the following equation pro- 
posed by Yamauchi and de Fontaine [27] 

E,N T = (1/V)~ F~(n)S=(q)S[~( - q)exp(iq L) (8) 
q 

where v is the volume of the system containing ~ and 
[3, n is the unit vector along the Fourier wave-vector q, 
F~(n)  is the elastic energy coefficient in Fourier space, 
and S~(q) and S ~ ( -  q) are the Fourier-space shape 
functions of ~ and ~, respectively. The total surface 
energy, Esu~v, of ~ and 13 is calculated from the 
equation 

/~SURF = "Ys(Sc~ -~- Sj3), (9) 

where S~ and S~ are the surface areas of ~ and [3, 
respectively. The precise procedures for calculating 
the above energies are shown in our previous papers 
[1,233. 

2.2. Bifurcation diagrams, 
Fig. 1 shows a schematic diagram of the variation in 
the energy state, i.e. ETT L, of paired coherent particles 
as a function of f and R. Fig. 2 is the so-called 
"bifurcation diagram" which is obtained by projecting 
the energy surface like Fig. 1 on to the f-R plane. The 
bifurcation diagram is symmetric with respect to the 
line of R = 0. In both figures, each thick line indicates 
the energy ridge having the highest ETT L at a given f, 
while each broken line indicates the energy valley 
having the lowest ETT L at a given f. When f increases, 
the ridge branches at the point indicated by the 
triangle in Fig. 1 or 2. This junction is called the 
"bifurcation point". The part of the ridge on this side 
of the bifurcation point in Fig. 1 or on the right-hand 
side of the bifurcation point in Fig. 2, forms the 
boundary between Region ! and Region I1. In Region 
I, the energy minimum locates along R = +_ 1 and 
ETT L decreases from the ridge (R = 0) to R = + 1 
((2) --+ 0 )  as indicated by thin arrows in Figs 1 and 2; 
on the contrary, in Region II the energy minimum 
locates along R = 0 and ETT L decreases from the ridge 
to R = 0 (II,) as indicated by bold arrows in Figs 1 and 
2. 

When f is small (e.g. at fs in Figs 1 and 2), the state 
of paired cz and [3 is in Region I where ESURF is 
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Figure I Schematic diagram of the energy state of paired coherent particles as a function o f / a n d  R, where ?is the mean particle radius and R 
the parameter describing the relative sizes of the paired particles. 
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Figure 2 Schematic illustration of the so-called "bifurcation dia- 
gram" obtained by projecting the energy surface like Fig. 1 on to the 
~ R  plane. ( ) The energy ridge having the maximum energy at a 
given f, ( - - - - - - )  the energy valley having the minimum energy at a 
given f. In Region I, the surface energy is dominant; in Region II, the 
elastic energy is dominant and incredible coarsening behaviour can 
be expected. 

dominant; the larger particle of the pair coarsens by 
absorbing the other and finally only one of the pair 
can stably exist. In Region I, microstructure coarsens 
to decrease ESURF and hence.ETx e, as the conventional 
LSW and MLSW theories predicted. However, when f 
is large (e.g. at fe in Figs 1 and 2), the state of paired 
and 13 comes into Region II where EELA is dominant; 
the smaller particle of the pair coarsens by absorbing 
the other until both of the paired particles have the 
same size i. This prediction for Region II surely 
corresponds to the incredible coarsening behaviour 
which we found, e.g. slowing down of coarsening, 
formation of uniform structure, etc. 

Fig. 3a and b illustrate the bifurcation diagrams for 
7' particles in Ni-36.1% Cu-9.8%Si (all in at%) and 
Ni-47.4%Cu 5.0%Si alloys; the former is called 
Ni-Cu-Si(Hf) and the latter Ni-Cu-Si(Lf). Although 
these alloys have the same value of 181 and also the 
same surface energy density 7s(6 = -0.0129 and Ys 
= 0.013 J m-2), bifurcation diagrams differ from each 
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Figure 3 Bifurcation diagrams calculated for three nickel-based 
systems: (a) Ni-36.1%Cn 9.8%Si (8 = - 0.0129, 7s = 0.013 J m -2, 
fv = 0.50); (b) Ni-47.4%Cu-5.0%Si(8 = - 0.0129, Ys 

= 0 . 0 1 3 J m  a fv = 0.18); (c) Ni-7.0%Si-6.0%A1 (6=  0.001, Ys 
= 0.013 J m  2 fv = 0.16). The extent of Region II, where elastic 

energy is dominant, is governed by lattice misfit, surface energy and 
volume fraction. 
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other: Region II for Ni-Cu-Si(Hf) is wider than that 
for Ni-Cu-Si(Lf). This difference arises from the dif- 
ference in volume fraction, fv, of 7' particles. The fv 
values are 0.50 for Ni Cu-Si(Hf) and 0.18 for 
Ni-Cu-Si(Lf). Because fv remains constant during 
coarsening at a given temperature for a given com- 
position, the inter-particle distance, d, becomes 
shorter with increasingfv. Elastic interaction becomes 
dominant with decreasing d. Hence the larger isfv, the 
more dominant is the effect of elastic interaction. 
Actually, it is clear from Fig. 4 that the coarsening 
for larger f~ proceeds more slowly and slows down 
more easily than that for smaller fv:m = 5.8 for 
Ni-Cu Si(Hf) and m = 3.6 for Ni-Cu-Si(Lf). 

Fig. 3c shows the bifurcation diagram for Ni-7.0% 
Si-6.0%A1 alloy (6 = 0.001, Ys = 0.013 jm-2) .  Elastic 
energy originates from lattice misfit, 6. In Ni Si-A1, 
the effects of elastic energy are negligibly small and the 
effect of surface energy is dominant because of small 
[61. Therefore, the effect of elastic interaction in 
Ni-Cu-Si is much more dominant than that in 
Ni-Si-A1. Fig. 3 clearly indicates that Region II for 
large ]6[ expands toward smaller f as compared with 
Region II for small J61, that is, Region II becomes 
wider with increasing 161 . This means that even at 
small f, the alloy system having large 161 easily comes 
into the region where elastic energy is dominant. 

3. A n e w  p a r a m e t e r  f o r  d e s c r i b i n g  
s t r u c t u r e  b i f u r c a t i o n  

A* is a useful parameter for describing the effects of 
elastic interaction energy on the precipitate morpho- 
logy [2, 3]. We can make good use of A* when we 
compare the coarsening kinetics in Ni-Cu-Si (zX* = 
- 1.0 m 2 J -  1) with that in Ni Si-A1 (A* 
= 0.07 m 2 J -  1). The larger the value of IA*I, the more 

dominant is the elastic energy: the coarsening for 
larger IA*] proceeds more slowly than that for smaller 
IA*]. When we compare two Ni-Cu-Si alloys, how- 
ever, A* is no longer effective. Although they have the 
same value of A* (A* = - 1.0 m 2 J -  i), their coarsen- 
ing behaviours actually differ from each other. This 
difference arises from the fact that elastic interaction 
becomes more dominant with decreasing d and hence 
with increasing fv. The bifurcation diagram includes 
the effect offv in addition to the effects of 6 and Ys. 
Fig. 3a and b clearly show the difference between the 
bifurcation diagrams for the two Ni-Cu-Si alloys. 
Hence the new parameter to be proposed should be 
based on the bifurcation diagram. 

Considering the point that all types of the incredible 
behaviour of particle coarsening take place under the 
influence of elastic energy in Region II of the bifurca- 
tion diagram, we must find a new parameter which 
represents the extent of Region II. Fig. 5 schematically 
shows various types of bifurcation diagrams. A pro- 
spective candidate for the parameter is the bifurcation 
point indicated by triangles (A, A) in the figure. The 
point performs its duties fairly well as the parameter 
for describing the size limit to which particles should 
coarsen to enter Region II. On comparing (a) with (b) 
in the figure, however, the bifurcation point no longer 
works well for expressing the extent of Region II. 

The parameter which we are now newly proposing 
is symbolized by r*+o.5- This point is defined as the f 
value at the intersection of the energy ridge and the 
line of R = - 0.5 in the bifurcation diagram, e.g. [] 
and �9 in Fig. 5. The intersection of the energy ridge 
and the line of R ---0.5 also gives the same value of 
f*_+o.5 because the bifurcation diagram is symmetric 
with respect to the line of R = 0. Because ETV L de- 
creases from f*_+0.s to the directions of smaller and 
larger f along R = - 0.5 or R = 0.5, f*_+o.5 is just like 
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Figure 4 Coarsening kinetics of y' particles in nickel-based alloys: (e) Ni-36.1%Cu-9.8%Si(3 = - 0.0129, Ys = 0.013 J m  2, fv = 0.50); 
( ~ )  Ni-47.4% Cu-5.0%Si(~ = - 0.0129, Ys = 0.013 J m -  z, fv = 0.18); (O)  Ni 7.0%Si-6.0%Al (~ = 0.001, Ys = 0.013 J m - z ,  fv = 0.16). m 
value in the equat ion ?(t) = Kt TM depends on lattice misfit, surface energy density and volume fraction. 
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Figure 5 Schematic illustration of various types of bifurcation diagrams. The parameter structureshed (F*+o.5) is defined as the intersection of 
the energy ridge and the line of R = - 0.5 (e.g. D, In) or R = 0.5. 
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Figure 6 Correlation between structureshed ~ '5  and m (in the equation f ( t ) =  Kt lj") for coherent particles in various alloy systems. 
(O) Ni Cr-AI; (�9 Ni-Si-A1; (tD) Cu Co; (A)  Ni-AI; (A) Ni-Si; ( ~ )  Ni-Mo;  (~I,) Ni-Ti; (In) Cu-Ti; (Z]) Ni-Cu-Si.  

the watershed and we term it a "structureshed". Fig. 5 
indicates that the values of f*_+o.5 for (a) and (b) have 
different values, i.e. ?a (Y~) and fb (n),  respectively, 
although the bifurcation points are identical. The 
structureshed successfully expresses the difference in 
the extent of Region II. The usefulness of the para- 
meter ~+ o.5 in describing the coarsening behaviour of 
coherent precipitates will be shown in Section 4. 

4. Interpretat ion of structural  changes 
by utilizing the parameter  
"'st ructu reshed'" 

4.1. Coarsening kinetics 
The experimentally obtained values of m and the 

calculated values of ~o.5  are summarized for various 
alloy systems containing coherent particles in Table I. 
The data in Table I are plotted in a logarithmic scale 
in Fig. 6. This figure clearly indicates that there is a 
good correlation between structureshed (~*_+o.s) and m 
value, as shown by the solid line. As r*_+o.5 increases, m 
rapidly decreases and approaches 3, which is predicted 
by the conventional LSW or MLSW theories. In other 
words, as the effect of elastic interaction becomes 
weaker, the coarsening rate approaches that explained 
by LSW or MLSW theories; when the elastic inter- 
action is dominant, the coarsening rate is very slow 
and deviates greatly from that predicted by LSW or 
MLSW theories. The structureshed parameter suc- 
cessfully describes the coarsening kinetics in elastically 
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Figure 7 Variations in the standard deviation, o, of size distribution during coarsening of coherent precipitates in various nickel-based alloys: 
Ni4Mo particles in Ni-Mo alloy, 7' in the other nickel-based alloys. (a) (�9 Ni-7.0Si-6.0Al; (0) Ni-18.2Cr-6.2AI; ( I )  NI-47.4Cu-5.0Si(Lf); 
(~) Ni-36.1Cu-9.8Si(Hf). (b) (A) Ni-15.4Si; (~) Ni-16.3Mo. 

constrained systems. In particular, the parameter  can 
well express the effect of volume fraction and hence the 
effect of elastic interaction on the coarsening kinetics. 

4.2. Change  in the size d is t r ibu t ion  
of part ic les 

Fig. 7a and b illustrate the relation between the mean 
particle radius, ~ and the standard deviation, ~, of size 
distribution for ~,' or Ni4Mo particles in various 
nickel-based alloys. During coarsening, cy values for 
some particles do not seriously change, and some 
particles exhibit a gradual decrease in ~, and others 
exhibit a rapid decrease. The decrease in cy means that 
the size distribution of particles becomes less scattered 
and hence particles become uniform in size. To express 
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the rate of change in o, we choose dlogo/dlog~. It is 
clear from Fig. 8 that there exists a good correlation 
between r+o. 5 and dlogo/dlog~, as shown by solid 
line. As (*_+ o.5 decreases from 10 3, dlog~/dlog~ rapidly 
decreases: as the elastic interaction becomes more 
dominant,  o decreases more rapidly and hence the 
two-phase structure becomes uniform more rapidly. 
The structureshed is also a good parameter  which can 
excellently describe the effect of elastic energy on the 
size distribution of precipitate particles in elastically 
constrained systems. 

5 .  C o n c l u s i o n  
There are many types of coarsening behaviour which 
cannot be explained by the conventional LSW or 
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TAB LE I Volume fraction, f ,  calculated values of structureshed 
F~0.5 , and experimentally obtained m values in the kinetic equation 
of coarsening, F(t)= Kt TM, for coherent particles in various 
elastically constrained systems 

Alloy system f,, F*+_ o. 5 m 
(at %) (nm) 

Ni-18.2Cr-6.2A1 0.11 980000 2.96 
Ni-7.0Si-6.0Al 0.16 5300 2.97 
Cu-4.0Co [28] 0.036 561 2.9 
Ni-12.5A1 [8] 0.10 303 3.04 
Ni-15.4Si 0.33 220 3.39 
Ni-16.3Mo 0.48 124 3.22 
Ni-10Ti [29] 0.22 112 3.0 
Cu~.18Ti 0.20 44 2.9 
Cu-4.7Ti [30] 0.31 31 4.0 
Ni-47.4Cu-5.0SP 0.18 22 3.58 
Ni-47.4Cu-5.0Si [31] 0.18 22 3.5 
Ni-45.0Cu-6.0Si [31] 0.25 17 3.9 
NiM2.6Cu-7.0Si [31] 0.32 14 4.8 
Ni-40.0Cu-8.0Si [31] 0.38 13 5.8 
Ni-38.0Cu-9.0Si [311 0.44 12 4.6 
Ni-36.1Cu-9.8Si [31] 0.50 12 5.9, 6.0 
Ni-36.1Cu-9.8Si b 0.50 12 5.78 

a Ni-Cu-Si(Lf) 
b Ni-Cu-Si(Hf) 

MLSW theories of Ostwald ripening. It is becoming 
widely accepted that sometimes the effects of elastic 
energy and, in particular, of elastic interaction energy 
are actually dominant during coarsening of precipit- 
ates. In elastically constrained systems, such as y' 
particles in a y matrix, it is essential that we should 
specify not only the surface energy but also the lattice 
misfit and the volume fraction, because the latter two 
govern the elastic interaction. The structureshed 
(F~o.5) which we have newly introduced here, is an 
excellent parameter for describing the structural 
changes in elastically constrained systems containing 
second-phase particles, whether the particles are co- 
herent or incoherent. 
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